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Abstract 

Medical imaging provides non-invasive assessments of phenotypic diversities in a number of cancer types. Medical 

images have the potential to offer insights into the patterns of disease spread and treatment response. Furthermore, 

advances in computerized medical image analysis enable the extraction of tumor’s visual representation (features) to 

facilitate characterizing tumour phenotypes. The association between tumor imaging biomarkers and existing genetic 

foreknowledge lead to the emergence of image-genomics. 

In this paper we review a deep domain adaptation learning framework for associating image features to tumour genetic 

information. Our approach exploits the potential of domain adaptation technique for image-genomics to quantify image 

features based on similar knowledge domains. This is accomplished by facilitating the learning of tumour image 

representations with larger datasets from similar domains to reduce the reliance on large volumes of disease-specific 

datasets for image-genomics research. 

In addition, our proposed framework enables the extraction of additional tumour visual descriptors to provide abstract 

image representations for associating with gene expressions. It leverages the current state-of-the-art in image object 

recognition to provide image features which encode subtle variations of tumour phenotypic characteristics. The 

quantification of such features is facilitated by the employment of domain adaptation techniques. We evaluated our 

proposed deep domain adaptation learning framework by comparing with current state-of-the-art in: (i) tumour 

histopathology image classification and; (ii) the degree of image-genomics associations compare with human-crafted 

tumour image descriptors. 

Keywords: Cancer Detection, Image processing, CNN, Machine Learning, Deep learning. 

Introduction 

Current practices for the treatment of human cancers rely upon the establishment of accurate diagnosis, which may 

involve a series of complex medical procedures comprising of patient screening for symptom evaluation, non-invasive 

imaging for disease localization and histopathology analysis of tissue specimens. In recent years, genetic sequencing is 

becoming an increasingly important addition to the existing diagnostic pipeline. Cancer diagnosis may be the result of 

analysis of data generated through each medical examinations; the integration of such data contributes towards the 

understanding of the diseases and hence exhibit potentials to offer optimal cancer therapy at individual patient level [1]. 

Although medical imaging and general pathology are becoming more routine in current cancer diagnosis, genetic 

sequencing is not always practical. This is due to human cancers exhibits strong phenotypic and genetic heterogeneity, 

where disease develops at multiple sites with genetic differences [2]. It is not practical or feasible to obtain tissue samples 

http://www.ijergs.in/
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from all sites of disease as invasive biopsies have the potential to induce tumor proliferation. Further, the cost of genetic 

examination is high in addition to its limited accessibility. 

As an alternative, medical images provide non-invasive assessments of phenotypic diversities in a number of cancer types 

and contribute to clinical decision- making, e.g., tumor detection, subtype characterization and treatment responses [3, 4]. 

Advances in computerized medical image analysis allow the extraction of tumor’s visual representations (features) to 

facilitate the characterization of tumor phenotypic differences, which offers insights into the patterns of disease spread 

and prognosis. The association between tumor imaging features and genetic foreknowledge allows the derivation of 

imaging surrogates to genetic biomarkers, and ultimately lead to the emerging field of image-genomics [5]. 

Image-genomics aims to associate the tumor imaging trait and clinical data (e.g., the underlying tumor gene expression) 

to provide an alternative approach that contributes to a non-invasive and accurate cancer diagnosis [6]. As such, the 

discovery and extraction of optimized tumor imaging descriptors represent a major challenge in the current image-

genomics research. 

Medical Imaging and Image Processing 

A Medical imaging is a fundamental component of the modern healthcare system and is essential for the accurate 

diagnosis and staging of cancers. Medical images provide a fast and non-invasive assessment of phenotypic diversity in 

many cancers [12] through a variety of different imaging modalities (or techniques). Medical image processing, in turn, 

allows the extraction of meaningful information which offers insights of different aspects of patients’ conditions. In this 

chapter, we provide an overview of medical imaging and the theoretical background in image processing techniques that 

are crucial for cancer diagnosis. 

Digital images consist of a collection of numerical picture elements, called pixels. The term pixel resolution refers to the 

number of pixels in an image, which can be represented as a single number or by the number of pixels in each dimension. 

For example, an image that contains 8,294,400 pixels can also be referred to as having a resolution of 8.3 megapixels or 

3840 ×2160 (width × height) pixels. 

Many medical imaging techniques consist of sampling 2D images along a third spatial axis to form 3D images, known as 

volumetric images or image volumes. These 3D volumetric images encode the spatial relationships between 3D pixels, 

called voxels, which both 2D and 3D images allow the extraction and interpretation of the encoded information through 

the use of image processing techniques. Both pixels and voxels exhibit spatial resolutions, which describe the size of the 

details captured by individual pixels or voxels. For instance, a spatial resolution of 10.00mm × 10.00mm × 5.00mm 

means that a voxel depicts a region with a volume of 500.00 mm. 

Contrast resolution refers to the range of distinct intensity or a set of intensities for red, green and blue (RGB) channels 

that can be distinguished in grayscale and colored images respectively. A relatively low contrast resolution can be 

interpreted as pixel/voxel intensities that are similar in an image and are difficult to distinguish. 
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Fig 1 : illustrates an example of a 2D image and a 3D volumetric image. Pixels and voxels are visualized in forms of 2D 

and 3D arrays of grids respectively 

In medical image processing, a region of interest (ROI) consists collections of pixels in 2D images that represent an area 

which encodes important information for particular domain or application in cancer diagnosis. The corresponding term 

volume of interest (VOI) refers to the emphasized anatomical structures that encode important knowledge for clinical 

uses. 

Modern healthcare utilizes different medical imaging modalities to capture different aspects of the human body for cancer 

diagnostic and treatment. Medical image modalities can be categorized into two classes based on their technique and 

process in visualizing different aspects of the diseas: (i) Anatomical and (ii) Physiological (functional) imaging. 

Anatomical medical images capture and visualize the anatomical structures of the ROI in the form of 2D or 3D images. 

Anatomical medical images allow physicians to interpret and evaluate the disease conditions for diagnosis purposes, and 

can also be used for the monitoring of treatment responses [4]. Functional imaging, on the other hand, captures the 

metabolic status of the ROI, which allows physicians to assess the physiological status of patients, and to identify 

structures with abnormalities, such as tumors. 

Common anatomical medical image modalities include X-ray, computed tomography (CT), magnetic resonance imaging 

(MRI). Common functional imaging includes single-photon emission computed tomography (SPECT) and positron 

emission tomography (PET). Such image techniques produce a single type of image or image volumes that are referred as 

single-modality medical imaging. 

Similar to CT images, digital WSI enables medical image analysis techniques to be applied to extract image features of 

abnormal cells. Image traits can then be exploited to correlate to genetic profiles of the tumor.  

Methodology 

Machine learning techniques for medical image processing are a well-established field. The ability of machine learning to 

quantify the representation features of the input medical image empowers numerous automated medical image processing 

algorithms for different clinical applications. However, machine learning systems were limited due to its requirement of 

domain expertise with careful engineering to be able to learn and transform the input data. Deep learning is a class of 

machine learning technique which allows learning of data representations with multiple layers of abstraction. Convolution 
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neural networks (CNNs) are a deep learning technique that extracts image features from imaging data to learn the 

sophisticated underlying representations with deep networks.  

Machine Learning 

Machine learning is a major field of computer science that has been utilized to serve many aspects of modern healthcare 

systems. With carefully engineered mathematical models, machine-learning systems have been applied in pattern 

recognition, image classification, medical image retrieval and tumor image segmentation. Compare to the rule-based 

systems, the core of machine learning techniques are based on the development of models from statistical and artificial 

intelligence approaches. It is essential for the machine learning model to “learn” to recognize the distinguishing 

characteristics of the patterns within the data to produce meaningful outputs. Generally, the learning approaches for 

machine learning models are divided into the following: supervised learning, unsupervised learning and reinforcement 

learning. 

Although unsupervised and reinforcement learning exhibit strong potentials in multiple disciplines, our contribution rely 

on labeled medical imaging data to explore the region-specific genetic association. As the contributions of this thesis 

involve mainly supervised approaches, we will only cover those approaches here. Supervised training approaches require 

several different types of database, defined as follows: 

Training data: refers to a collection of data that are used to train the machine learning model. The machine learning model 

learns the representation of the training data and its predictive relationship to the output labels. Validation data: refers to a 

separate collection of data that are used in addition to the training data to adjust or guide the training process. This 

process involves the comparison between the predicted output with the training data labels. This provides an indication of 

the performance of the model on unseen data during the training process, and allows tuning of model parameters. 

Test data: refers to a collection of withheld data which is used to evaluate the performance of the model at the after the 

completion of the training process. Test data indicates the performance of the trained model with new examples. Test data 

are not involved in the training process. 

Supervised Learning 

Supervised learning is one of the most common approaches for medical image processing and analysis. It refers to the 

approach where the model is trained with labeled data sets so that the model learns the internal representation of the input 

data to make predictions on the labels [13]. The resulting model from supervised learning is typically used to assign class 

labels with known predictive features for future data sets. Supervised learning is capable of performing classification or 

regression with training data set with discrete or continuous properties, respectively. 

Artificial Neural Network 

Artificial Neural Networks (ANNs) are a machine learning approach that was inspired by the biological neural networks 

that constitute human brains [20]. An ANN consists a collection of connected nodes or “artificial neurons” in a directed 

graph in the form of networks. ANNs are commonly used in machine learning to learn the complex non-linear 

relationships from the dataset. This is achieved through the ANN’s mechanisms where each neuron receives, processes 

and transmits a signal from one to another in a similar way to the biological synapse. To achieve the optimized learning 
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outcome, ANN requires the design of an appropriate network structure and learning approach to tune the weights and 

biases of the network. 

Neurons are the fundamental building blocks of many ANNs. Fig 2 illustrates the structure of a single neuron where 

multiple inputs values are processed in the neuron to produce a single output value, where X is a vector of inputs with n 

elements, W is the vector of the weights with a corresponding number of elements. 

 
Fig 2: Representation of a single model neuron 

The training of an ANN can be explained by illustrated single neuron model. For each element in the training dataset, its 

features are extracted and transmitted into the neuron in the form of a feature vector. Assuming that the classification task 

involves only two classes, the neuron processes the input feature vector by multiplying with its internal weights. A class 

prediction is based on whether the value of the product is above a threshold. If the predicted class does not match the 

corresponding label, each weight within the neuron is adjusted individually to refine the prediction process. Additionally, 

the training dataset is typically divided into collections of batches which allows the weight adjustment after training of 

each batch. An epoch refers to the full pass of the entire training dataset; robust weights for classification tasks are the 

outcome of hundreds of training epochs. 

Deep Learning 

Deep learning can be categorized as a class of techniques of machine learning, which allows the computation models with 

multiple processing layers to learn the internal representation of the input data with multiple levels of abstraction. Deep 

learning was proposed to address the limited performance of traditional machine learning approaches to process natural 

data in their raw form. Deep learning resolves this issue by utilizing the multiple processing layers to learn and interpret 

the low level, abstract representations from the high-level understandings of the input dataset [12]. This is achieved by 

feeding the raw data through the successive multilayer architecture in a sequential manner, where deeper layers learn the 

abstract representation from the representation in the previous layers. 

Deep learning technique employs backward propagation of error or “back propagation” to train the multilayer model for 

supervised learning [11]. Back propagation calculates the gradient of the error function of the ANN with respect to its 

weights and passes the gradient backwards through the neural network. Compared to the traditional approach where the 

gradient of the error function is calculated for each layer separately, the backflow of error gradient allows more efficient 

computation of gradience for ANNs. 

The implementation of deep learning technique utilizes specialized GPUs to improve the performance of training process 

by 10 to 20 times compared to the traditional training approach on standard CPUs. Recent advances in deep learning have 
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lead to the improved state-of-the-art in various domains such as visual object recognition, speech recognition and also in 

medical image analysis. 

Convolutional Neural Networks 

Convolutional Neural Networks (CNNs) is a particular type of ANN and designed to process input data that is in the form 

of multidimensional arrays, e.g., colored 2D images which consist of 2D arrays for each RGB (color) channel. Compared 

with traditional ANNs with fully connected adjacent layers, CNNs are much easier to train and are more generalized. 

CNNs are structured in a series of stages where each stage consists of specialized layers with unique functions. The 

building blocks of a CNN consists three types of specialized layers: Convolution, pooling and activation layers, e.g., 

rectified linear unit (ReLU) layers. 

Convolution layers consist of organized units in the form of feature maps, where each unit is connected to local patches 

from the previous layer through a set of weights which is referred as filter. This design allows the Convolution layers to 

detect local conjunctions of features from the previous layer, as local values are often highly correlated and are invariant 

to the location in an image input. 

Pooling layers are designed to merge features in spatial proximity which share semantic similarities into one. The 

principle behind pooling layers is to detect the position of motifs that are typically formed by highly correlated features 

through a coarse-grained approach. An example pooling layer calculates the maximum of a local patch in one or more 

feature maps. Pooling layers act to reduce the dimensions of the representations and to create an invariance to small 

distortions and shifts. 

 
Fig 3: An example 2D convolution of a 3 × 3 input using a 2 × 2 filter with the 2 × 2 output feature map 

Results 

Results demonstrated that domain adaptation technique facilitates the learning of image representations of abnormalities 

in medical images by extending or refining existing knowledge from similar domains. The quantification of such image 

features hence improves the accuracy of tumor image classification tasks, compared to traditional approaches where deep 

learning models were trained from scratch on limited volumes of domain-specific datasets. Our results also demonstrated 

that the proposed framework offers additional deep image features to encode abstract representation of tumor phenotypic 



 Pramod Kumar Sharma, et al. International Journal of Engineering Research and Generic Science (IJERGS)  
 
 

 
© IJERGS, All Rights Reserved. 
 
                                

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

Pa
ge

37
 

characteristics which exhibit stronger associations to patient-specific genetic information, compared to human-crafted 

image features. 

Domain adaptation is the ability to apply an algorithm trained in one or more "source domains" to a different (but related) 

"target domain". Domain adaptation is a subcategory of transfer learning. In domain adaptation, the source and target 

domains all have the same features space (but different distributions); in contrast, transfer learning includes cases where 

the target domain's feature space is different from the source feature space or spaces. 

Conclusion 

In this paper, we presented novel deep domain adaptation learning framework for image-genomics analysis to improve 

image-genomics association. Our proposed framework emphasized the employment of domain adaptation of deep 

learning in image-genomics research to offer additional deep image features that encode abstract image representations of 

subtle variation in tumor medical images. Our domain adaptation approach reduces the dependency on large volumes of 

annotated medical image dataset for deep learning models to learn the tumor image representation. 
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Abstract 

This paper shows a computer-aided diagnostic (CAD) method, a dataset from the  for lung cancer classification of CT 

scans with unmarked nodules. As an initial segmentation approach, thresholding was used to segment out lung tissue 

from the remainder of the CT scan. The next finest lung segmentation was created by Thresholding. The initial solution 

was to feed the segmented CT scans directly for classification into 3D CNNs, but this proved to be insufficient. Instead, 

the first identification of nodule candidates in the  CT scans was performed by an updated U-Net trained on LUNA16 

data (CT scans with labelled nodules). In order to identify the CT scan as positive or negative for lung cancer, the U-Net 

nodule detection provided several false positives, so regions of CTs with segmented lungs where the most likely nodule 

candidates were located as defined by the U-Net production were fed into 3D Convolutional Neural Networks (CNNs). 

The 3D CNNs provided the Accuracy O Test Set. Our CAD system's efficiency outperforms the existing literature CAD 

systems that have many preparation and testing levels, each involving a lot of labelled data, whereas our CAD system has 

only three key stages (segmentation, nodule candidate identification, and classification of malignancy), allowing more 

effective training and detection and more generalization for other cancers 

Keywords: Lung cancer; computed tomography; deep learning; Convolutional neural networks; segmentation 

Introduction 

Lung cancer is one of the most prevalent diseases  responsible for over 225,000 cases, 150,000 deaths, and $12 billion in 

total health care expenses. It is also one of the worst cancers; nationally, only 17 percent of people diagnosed with lung 

cancer in the country  live five years after diagnosis, although in developed countries, the mortality rate is smaller. A 

cancer's level corresponds to how deeply it has metastasized. Stages 1 and 2 refer to cancers found in the lungs, and 

cancers that have spread to other organs refer to the later stages. Present screening procedures, such as CT scans, include 

biopsies and imaging. Early diagnosis of lung cancer (detection during the earlier stages) greatly increases the probability 

of survival, but early detection of lung cancer is often more difficult when less symptoms are present. [1]. 

In patient CT scans of lungs with and without early stage lung cancer, our job is a binary classification question to 

diagnose the existence of lung cancer. To create an accurate classifier, we aim to use techniques from computer vision 

and deep learning, particularly 2D and 3D convolutionary neural networks. An correct classification of lung cancer could 

accelerate and reduce the cost of screening for lung cancer, encouraging more universal screening. 

Early identification and survival change. The aim is to build a computer-aided diagnostic (CAD) system that involves 

patient chest CT scans and outputs as an input, whether the patient has lung cancer or not. [2]. 

Although this job sounds simple, in the haystack dilemma it is really a needle. The CAD device will have to detect the 

presence of a small nodule (< 10 mm in diameter for early stage cancers) from a large 3D lung CT scan to determine 

whether or not a patient has early-stage cancer (typically around 200 mm 400 mm 400 mm). An example of an early stage 

https://www.ijergs.in/
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nodule of lung cancer seen in a 2D slice of a CT scan is given in Fig. 1. In addition, a CT scan is packed with noise from 

nearby tissues, bone, air, so this noise will first have to be preprocessed for the CAD systems search to be successful. 

Therefore, image preprocessing, nodule candidate identification, malignancy classification are our classification pipeline. 

In this article, we use systematic preprocessing procedures to extract specific nodules in order to increase the precision of 

lung cancer diagnosis. In addition, we conduct CNN end-to-end testing from scratch in order to understand the full 

capacity of the neural network, i.e. to acquire discriminatory characteristics. A dataset containing lung nodules from more 

than 1390 low dose CT scans is used for detailed experimental assessments. 

 
Figure 1: 2D CT scan slice containing a small (5mm) early stage lung cancer nodule. 

Related Work 

Recently, deep artificial neural networks have been applied in many applications in pattern recognition and machine 

learning, especially, Convolutional neural networks (CNNs) which is one class of models [3]. Another approach of CNNs 

was applied on ImageNet Classification in 2012 is called an ensemble CNNs which outperformed the best results which 

were popular in the computer vision community [4]. There has also been popular latest research in the area of medical 

imaging using deep learning with promising results. 

 R. Golan proposed a framework that trains the weights of the CNN by a back propagation to detect lung nodules in the 

CT image sub-volumes. This system achieved sensitivity of 78.9% with 20 false positives, while 71.2% with 10 FPs per 

scan, on lung nodules that have been annotated by all four radiologists.  

Convolutional neural networks have achieved better than Deep Belief Networks in current studies on benchmark 

computer vision datasets. The CNNs have attracted considerable interest in machine learning since they have strong 

representation ability in learning useful features from input data in recent years. 

Data 

Our primary dataset is the patient lung CT scan dataset from Cancer Hospital. The dataset contains labeled data for 1475 

patients, which we divide into training set of size 900, and test set of size 575. For each patient, the data consists of CT 

scan data and a label (0 for    no cancer, 1 for cancer). Note that the dataset does  not have labeled nodules. For each 
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patient, the CT scan data consists of a variable number of images (typically around 100- 400, each image is an axial slice) 

of 512  512 pixels. The  slices are provided in DICOM format. Around 70% of the provided labels in the  dataset are 0, so 

we used a weighted loss function in our malignancy classifier to address this imbalance. 

Dataset alone proved to be inadequate to accurately classify the validation set, we also used the patient lung CT scan 

dataset with labeled nodules from the Lung Nodule Analysis 2016 (LUNA16) Challenge to train a U-Net for lung nodule 

detection. The LUNA16 dataset contains labeled data for 888 patients, which we divided into  a training set of size 710 

and a validation set of size 178. For each patient, the data consists of  CT scan data and a nodule label (list of nodule 

center coordinates and diameter). For each patient, the CT scan data consists of a variable number of images (typically 

around 100-400, each image is an axial slice) of 512 × 512 pixels. LUNA16 data was used to train a U-Net for nodule 

detection, one of the phases in our classification pipeline. The problem is to accurately predict a patient’s label (‘cancer’ 

or ‘no cancer’) based on the patient’s Kaggle lung CT scan. We will use accuracy, sensitivity, specificity, and AUC of the 

ROC to evaluate our CAD system’s performance on the test set. 

Methods 

Typical CAD systems for lung cancer have the following pipeline: image preprocessing, detection of cancerous nodule 

candidates, nodule candidate false positive reduction, malig- nancy prediction for each nodule candidate, and malignancy 

prediction for overall CT scan [15]. These pipelines have many phases, each of which are computationally expensive and 

require well-labeled data during training. For example, the false positive reduction phase requires a dataset of labeled true 

and false nodule candidates, and the nodule malignancy prediction phase requires a dataset with nodules labeled with 

malignancy. 

 
Figure 2: 3D Convolutional neural networks architecture 

True/False labels for nodule candidates and malignancy labels for nodules are sparse for lung cancer, and may be 

nonexistent for some other cancers, so CAD systems that rely on such data would not generalize to other cancers. In order 

to achieve greater computational efficiency and generalizability to other cancers, the proposed CAD system has shorter 

pipeline and only requires the following data during training: a dataset of CT scans with true nodules labeled, and a 

dataset of CT scans with an overall malignancy label. State-of-the-art CAD systems that predict malignancy from CT 

scans achieve AUC of up to 0.83 [16]. However, as mentioned above, these systems take as input various labeled data that 

is not used in this framework. The main goal of the proposed system is to reach close to this performance. 

The proposed CAD system starts with preprocessing the 3D CT scans using segmentation, normalization, down sampling, 

and zero-centering. The initial approach was to simply input the preprocessed 3D CT scans into 3D CNNs, but the results 
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were poor. So an additional preprocessing was performed to input only regions of interests into the 3D CNNs. To identify 

regions of interest, a U-Net was trained for nodule candidate detection. Then input regions around nodule candidates de- 

tected by the U-Net was fed into 3D CNNs to ultimately classify the CT scans as positive or negative for lung cancer. The 

overall architecture is shown in Fig. 2, all details of layers will be described in the next sections. 

A. Preprocessing and Segmentation 

For each patient, pixel values was first converted in each image to Hounsfield units (HU), a measurement of radio 

density, and 2D slices are stacked into a single 3D image. Because tumors form on lung tissue, segmentation is used to 

mask out the bone, outside air, and other substances that would make data noisy, and leave only lung tissue information 

for the classifier. A number of segmentation approaches were tried, including thresholding, clustering (Kmeans and 

Meanshift), and Watershed. K-means and Meanshift allow very little super- vision and did not produce good qualitative 

results. Watershed produced the best qualitative results, but took too long to run to use by the deadline. Ultimately, 

thresholding was used. 

After segmentation, the 3D image is normalized by applying the linear scaling to squeeze all pixels of the original un 

segmented image to values between 0 and 1. Spline interpolation down samples each 3D image by a scale of 0.5 in each 

of the three dimensions. Finally, zero-centering is performed on data by subtracting the mean of all the images from the 

training set. 

 
(a).Histograms of pixel values in HU for sample patients CT scan at various slices. 
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(b). Ccorresponding 2D axial slices. 

Figure 3:  Histogram of HU values at 3b corresponding axial slices for sample patient 3D image at various axial. 

Simulation Results 

The experiments are conducted using DSB  dataset.  In this dataset, a thousand low-dose CT images from high-risk 

patients in DICOM format is given. The DSB database consists of 1397 CT scans and 248580 slices. Each scan contains a 

series with multiple axial slices of the chest cavity. Each scan has a variable number of 2D slices (Fig. 4), which can vary 

based on the machine taking the scan and patient. The DICOM files have a header that contains the necessary information 

about the patient id, as well as scan parameters such as the slice thickness. It is publicly available in the . Dicom is the de-

facto file standard in medical imaging. This pixel size/coarseness of the scan differs from scan  to scan (e.g. the distance 

between slices may differ), which can hurt performance of our model.  
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Figure 4: Number of slices per patient in data science bowl dataset. 

The accuracy metric is the used metric in our evaluations. In our first set of experiments we considered a range of CNN 

architectures for the binary classification task. Early experi- mentation suggested that the number of filters and neurons 

per layer were less significant than the number of layers. Thus, to simplify analysis the first Convolutional layer used 

seven filters with size 5 5 5, the second Convolutional layer used 17 filters with 5 5 3 and all fully connected layers used 

256 neurons. These were found to generally perform well and we considered the impact of one or two Convolutional 

layers followed by one or two fully connected layers. The networks were trained as described above and the results of 

these experiments can be found in Table I. Our results suggest that two Convolutional layers followed by a single hidden 

layer is one of the optimal network architecture for this dataset. The average error for training . 

Another important parameter in the training of neural networks is the number of observations that are sampled at each 

iteration, the size of  the  so-called  mini batch.  

The use of mini batches is often driven in part by computational considerations but can impact the ability of SGD to find 

a good solution. Indeed, we found that choosing the proper mini batch size was critical for learning to be effective. We 

tried mini batches of size 1, 10, 50 and 100. While the nature of SGD suggests that larger batch sizes should produce 

better gradient estimates and there for work better, our results here show that the opposite is true. Smaller batch sizes, 

even as small as 1, produce the best results. We suspect that the added noise of smaller batch sizes allows SGD to better 

escape poor local optima and thus perform better overall. 

The recognition results are shown by confusion matrix achieved on the DSB dataset with 3D CNN as shown in Table 

As shown from the Table, Accuracy of model is 86.6%, Misclassification rate is 13.4%, False positive rate is 11.9%, 

and False Negative is 14.7%. Almost all patients are classified correctly. Additionally, there is an enhancement on 

accuracy due to efficient U-Net architecture and segmentation. 
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Actual Abnormal Normal 

Abnormal 0.853 0.147 

Normal 0.119 0.881 

Table I: Confusion Matrix of 3D CNN using 30% Testing 

Conclusion 

In this paper,  discussed  a deep Convolutional neural network (CNN) architecture to detect nodules in patients of lung 

cancer and detect the interest points using U-Net architecture. This step is a preprocessing step for 3D CNN. The deep 3D 

CNN models performed the best on the test set. While we achieve state-of-the-art performance AUC of 0.83, we perform 

well considering that we use less labeled data than most state- of-the-art CAD systems. As an interesting observation, The 

first layer is a preprocessing layer for segmentation using different techniques. Threshold, Watershed, and U-Net are used 

to identify the nodules of patients. 

 The network can be trained end-to-end from raw image patches. Its main requirement is the availability of training 

database, but otherwise no assumptions are made about the objects of interest or underlying image modality. 

In the future, it could be possible to extend our current model to not only determine whether or not the patient has 

cancer, but also determine the exact location of the cancerous nodules. The most immediate future work is to use 

Watershed segmentation as the initial lung segmentation. Other opportunities for improvement include making the 

network deeper, and more extensive hyper parameter tuning. Also, we saved our model parameters at best accuracy, but 

perhaps we could have saved at other metrics, such as F1. Other future work include extending our models to 3D images 

for other cancers. The advantage of not requiring too much labeled data specific to our cancer is it could make it 

generalizable to other cancers. 
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ABSTRACT 

In this paper, we propose a versatile profound area learning system for partner picture qualities 

with hereditary data from tumors. Our methodology outfits the capability of the space variation 

strategy for genomic imaging to measure picture qualities dependent on comparative information 

territories. This is refined by making it simpler to learn tumor imaging with bigger datasets from 

comparable spaces to decrease dependence on enormous volumes of infection explicit datasets 

for genomics research imaging.  

Also, our proposed structure considers the extraction of extra visual tumor descriptors to give 

conceptual picture portrayals to relationship with hereditary articulations. It exploits the present 

status of the workmanship in perceiving picture objects to give picture attributes that encode 

inconspicuous varieties in the phenotypic qualities of the tumor. The evaluation of these 

attributes is encouraged by the utilization of space variation procedure. 

We assessed our proposed profound space variation learning structure by contrasting and present 

status of-the-workmanship in: (I) tumor histopathology picture arrangement and; (ii) the level of 

picture genomics affiliations, contrast and human-created tumor picture descriptors. 

KEYWORDS: CNN, ML, Lung Cancer, Image Processing, Deep Learning. 

I. INTRODUCTION 

This theory tends to this test in the field of medical picture investigation, where our methodology 

offers extra imaging functionalities with an area variation procedure to encode the portrayal of 

the extra tumor aggregate. This theory depicts exploration to address two key speculations: Can 

space transformation encourage medical picture investigation and treatment applications? 

Assuming this is the case, is the area variation ready to infer visual tumor descriptors that 

produce more grounded relationship with hereditary data? 

The image is the communication mode most used in different fields such as medical field, 

research field, industry, military area, etc. The significant picture move will happen over an 

unstable Internet organization. Along these lines, there is a requirement for satisfactory security 

for the picture to keep an unapproved individual from getting to significant data. The benefit of 

the picture is that it covers more media information and necessities security [4]. Cryptography is 

a sort of picture security strategy; It offers the protected technique for sending and putting away 

the picture over the Internet. Security is the primary worry of any framework to keep up the 

uprightness, privacy and genuineness of the picture. In the event that cryptography is the 

compelling strategy, you likewise face the security issue if the grayscale information is more 
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various [1]. 

The most well-known encryption components are AES, DES, 3DES, RSA, and SEA and The 

IDEA these systems are broadly utilized for pictures, recordings, and so on. 

Modern cryptography can be classified into two types:- 

A. Symmetric key cryptography 

In the form of cryptography, there is only one key as the "private" key is used to encrypt and 

decrypt the data between the sender and the recipient. 

 

Fig 1: Symmetric key cryptography 

B. Asymmetric key cryptography 

In this form of cryptography, there are 2 types of keys: the public key and the private key and 

both are used in the Encryption and decryption process The public key is available to all the 

world. 

 

Fig 2: Asymmetric key cryptography 
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II. DIGITAL IMAGE PROCESSING (DIP) 

DIP stands for the processing of snap shots, which might be virtual in nature through a digital 

computer. Its miles the purchase and processing of an picture. We are able to carry out a big 

quantity of duties, inclusive of enhancing pictorial statistics for human belief, image processing 

for independent gadget utility, efficient storage and transmission. Under human perception, the 

following applications of Digital Image Processing are: medical imaging, remote sensing, 

weather forecasting, atmospheric study and astronomy. Under machine vision, the following 

applications of Digital Image processing are: automated inspection, boundary information and 

video sequencing processing. 

 

Fig 3 : Fundamental Steps in Image Processing 

There are following steps in digital image processing: 

1. Image acquisition: An imaging sensor and the ability to digitize the sign produced 

through the sensor. 

2. Image pre-processing: Enhances the image quality, filtering, contrast enhancement. 

3. Image segmentation: To partition an input image into its components or objects. 

4. Image representation: Convert the input data to a format suitable for computer 

processing. 

5. Image description: Extract functionalities that give rise to interesting quantitative 

information or basic functionalities to differentiate one object class from another. 

6. Image recognition and Interpretation: Assign a label to an object based on the 

information provided by its descriptors and assign a meaning to a set of recognized 

objects. 

7. Knowledge base: Contributes to efficient processing as well as module cooperation. 

 

III. IMAGE DIGITALIZATION 

Each matrix element represented by one of the finite set of discrete values. An image should be 

represented by infinite number of points. Each such image point may contain one of the infinitely 
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many possible intensity/colour values needing infinite number of bits. Obviously, such a 

representation is not possible by any digital computer. 

IV. IMAGE-GENOMICS 

Imaging hereditary qualities is a quickly arising field that is opening up another scene of 

disclosure in medication and neuroscience. The field is a mixture exertion that combines 

techniques and disclosures in both imaging and hereditary qualities; its capacity has as of late 

taken a quantum jump for various reasons. To begin with, numerous gatherings overall are 

checking a great many people with primary and useful attractive reverberation imaging (MRI). 

Tests are currently huge enough to find and confirm impacts of explicit qualities on the mind [1]. 

Second, voxel-wise genomic strategies are arising that search each area in a mind picture for 

measurable impacts of qualities [4]. These methodologies recognize cognizant anatomical 

examples of quality impacts in 3D. Replication endeavors would then be able to zero in on 

chosen cerebrum quantifies that show guarantee in primer investigations. 

 

 

Fig 4: Associating image features with gene expression profiles using current image-

genomic approach 

V. ANALYSIS OF DOMAIN ADAPTATION FACILITATED MEDICAL IMAGE 

This section portrays our proposed space variation encouraged medical picture examination 

framework. The space transformation conspire expects to beat the dependence on enormous 

volumes of commented on datasets for learning tumor picture portrayals and to improve medical 

picture examination with respect to tumor picture arrangement. We assess our technique by 

contrasting with the customary scratch-prepared CNNs for tumor order task. Our outcomes 

demonstrate that area transformation encourages the preparation cycle of CNNs and show 

improved forecast correct nesses for the tumor picture characterization undertakings where 
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preparing datasets are restricted. 

 

Fig 5: Patch-level tumour detection proposed model overview 

VI. DEEP IMAGE-GENOMICS 

This section subtleties our proposed profound space variation learning structure for picture 

genomics examination. Our business locales the momentum hole in picture genomics 

examination to separate extra, integral picture includes that encode complex conceptual 

portrayals of tumor phenotypic attributes for picture genomics affiliation. We assess our 

proposed picture genomics system with the present status of-the-craftsmanship in picture 

genomics investigation to look at the levels of relationship between picture highlights and the 

tumor hereditary data. Our outcomes recommend that the proposed system gives stable picture 

highlights to encode tumor phenotypic attributes. Results further show that the extricated picture 

highlights offers more grounded relationship to tumor fundamental hereditary data and can 

possibly distinguish imaging substitutes for tumor prognostic biomarkers. 

 

Fig 6: The proposed deep image-genomics framework 
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VII. CONCLUSION 

In this Paper, we introduced novel profound space variation learning structure for picture 

genomics examination to improve picture genomics affiliation. Our proposed structure stressed 

the work of area transformation of profound learning in picture genomics exploration to offer 

extra profound picture includes that encode conceptual picture portrayals of inconspicuous 

variety in tumor medical pictures. Our space variation approach diminishes the reliance on 

enormous volumes of commented on medical picture dataset for profound learning models to 

gain proficiency with the tumor picture portrayal.  

Our outcomes exhibited that area variation strategy encourages the learning of picture portrayals 

of irregularities in medical pictures by broadening or refining existing information from 

comparable areas. The measurement of such picture includes henceforth improves the exactness 

of tumor picture order assignments, contrasted with customary methodologies where profound 

taking in models were prepared without any preparation on restricted volumes of area explicit 

datasets. Our outcomes likewise showed that the proposed system offers extra profound picture 

highlights to encode theoretical portrayal of tumor phenotypic qualities which display more 

grounded relationship to tolerant explicit hereditary data, contrasted with human-created picture 

highlights. 
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